DOUBLE (r, s)(u, v)-PREOPEN SETS

EUN PYO LEE* AND SEUNG ON LEE**

ABSTRACT. We introduce the concepts of double (r,s)(u,v)-preopen sets, double (r,s)(u,v)-preclosed sets and double pairwise (r,s)(u,v)-precontinuous mappings in double bitopological spaces and investigate some of their characteristic properties.

1. Introduction

Chang [2] defined fuzzy topological spaces. These spaces and its generalizations are later studied by several authors, one of which, developed by Šostak [12], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay, Hazra, and Samanta [3], and by Ramadan [11].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Çoker and his colleagues [4, 6, 7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Using the idea of degree of openness and degree of nonopenness, Çoker and M. Demirci [5] defined intuitionistic fuzzy topological spaces in Šostak's sense as a generalization of smooth fuzzy topological spaces and intuitionistic fuzzy topological spaces.

Kandil [8] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces.

In this paper, we introduce the concepts of double (r, s)(u, v)-preopen sets, double (r, s)(u, v)-preclosed sets and double pairwise (r, s)(u, v)-precontinuous mappings in double bitopological spaces and investigate some of their characteristic properties.

Received August 10, 2015; Accepted January 15, 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 54A40, 03E72.

Key words and phrases: double (r,s)(u,v)-preopen sets, double (r,s)(u,v)-preclosed sets, double pairwise (r,s)(u,v)-precontinuous.

Correspondence should be addressed to Seung On Lee, solee@chungbuk.ac.kr.

This work was supported by the research grant of Chungbuk National University in 2014.

2. Preliminaries

Let I be the unit interval [0,1] of the real line. A member μ of I^X is called a fuzzy set of X. For any $\mu \in I^X$, μ^c denotes the complement $1-\mu$. By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

Let X be a nonempty set. An intuitionistic fuzzy set A is an ordered pair

$$A = (\mu_A, \gamma_A)$$

where the functions $\mu_A: X \to I$ and $\gamma_A: X \to I$ denote the degree of membership and the degree of nonmembership, respectively, and $\mu_A + \gamma_A \leq \tilde{1}$.

Obviously every fuzzy set μ on X is an intuitionistic fuzzy set of the form $(\mu, \tilde{1} - \mu)$.

DEFINITION 2.1. [1] Let $A=(\mu_A,\gamma_A)$ and $B=(\mu_B,\gamma_B)$ be intuitionistic fuzzy sets on X. Then

- (1) $A \subseteq B$ iff $\mu_A \le \mu_B$ and $\gamma_A \ge \gamma_B$.
- (2) A = B iff $A \subseteq B$ and $B \subseteq A$.
- (3) $A^c = (\gamma_A, \mu_A).$
- (4) $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B).$
- (5) $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B).$
- (6) $0_{\sim} = (\tilde{0}, \tilde{1}) \text{ and } 1_{\sim} = (\tilde{1}, \tilde{0}).$

Let f be a mapping from a set X to a set Y. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy set of X and $B = (\mu_B, \gamma_B)$ an intuitionistic fuzzy set of Y. Then:

(1) The image of A under f, denoted by f(A), is an intuitionistic fuzzy set in Y defined by

$$f(A) = (f(\mu_A), \tilde{1} - f(\tilde{1} - \gamma_A)).$$

(2) The inverse image of B under f, denoted by $f^{-1}(B)$, is an intuitionistic fuzzy set in X defined by

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)).$$

An *intuitionistic fuzzy topology* on X is a family T of intuitionistic fuzzy sets in X which satisfies the following properties:

- $(1) \ 0_{\sim}, 1_{\sim} \in T.$
- (2) If $A_1, A_2 \in T$, then $A_1 \cap A_2 \in T$.
- (3) If $A_i \in T$ for all i, then $\bigcup A_i \in T$.

The pair (X,T) is called an *intuitionistic fuzzy topological space*.

Let I(X) be a family of all intuitionistic fuzzy sets of X and let $I \otimes I$ be the set of the pair (r, s) such that $r, s \in I$ and $r + s \leq 1$.

DEFINITION 2.2. [12] Let X be a nonempty set. An *intuitionistic* fuzzy topology in Šostak's sense $\mathcal{T}^{\mu\gamma} = (\mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ on X is a mapping $\mathcal{T}^{\mu\gamma}: I(X) \to I \otimes I(\mathcal{T}^{\mu}, \mathcal{T}^{\gamma}: I(X) \to I)$ which satisfies the following properties:

- (1) $\mathcal{T}^{\mu}(0_{\sim}) = \mathcal{T}^{\mu}(1_{\sim}) = 1 \text{ and } \mathcal{T}^{\gamma}(0_{\sim}) = \mathcal{T}^{\gamma}(1_{\sim}) = 0.$
- (2) $\mathcal{T}^{\mu}(A \cap B) \geq \mathcal{T}^{\mu}(A) \wedge \mathcal{T}^{\mu}(B)$ and $\mathcal{T}^{\gamma}(A \cap B) \leq \mathcal{T}^{\gamma}(A) \vee \mathcal{T}^{\gamma}(B)$.
- (3) $\mathcal{T}^{\mu}(\bigcup A_i) \geq \bigwedge \mathcal{T}^{\mu}(A_i)$ and $\mathcal{T}^{\gamma}(\bigcup A_i) \leq \bigvee \mathcal{T}^{\gamma}(A_i)$.

The $(X, \mathcal{T}^{\mu\gamma}) = (X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ is said to be an intuitionistic fuzzy topological space in Šostak's sense. Also, we call $\mathcal{T}^{\mu}(A)$ a gradation of openness of A and $\mathcal{T}^{\gamma}(A)$ a gradation of nonopenness of A.

Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space in Šostak's sense $(X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ and $(r, s) \in I \otimes I$. Then A is said to be

- (1) a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r,s)-open set if $\mathcal{T}^{\mu}(A) \geq r$ and $\mathcal{T}^{\gamma}(A) \leq s$,
- (2) a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r,s)-closed set if $\mathcal{T}^{\mu}(A^c) \geq r$ and $\mathcal{T}^{\gamma}(A^c) \leq s$.

Let $(X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ be an intuitionistic fuzzy topological space in Šostak's sense. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closure is defined by

$$\mathcal{T}^{\mu\gamma}$$
-cl $(A, r, s) = \bigcap \{B \in I(X) \mid A \subseteq B, B \text{ is } \mathcal{T}^{\mu\gamma}$ -fuzzy (r, s) -closed $\}$ and the $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s) -interior is defined by

$$\mathcal{T}^{\mu\gamma}$$
-int $(A, r, s) = \bigcup \{B \in I(X) \mid A \supseteq B, B \text{ is } \mathcal{T}^{\mu\gamma}$ -fuzzy (r, s) -open $\}$.

LEMMA 2.3. [9] For an intuitionistic fuzzy set A in an intuitionistic fuzzy topological space in Šostak's sense $(X, \mathcal{T}^{\mu}, \mathcal{T}^{\gamma})$ and $(r, s) \in I \otimes I$, we have:

- (1) $\mathcal{T}^{\mu\gamma}$ -cl $(A, r, s)^c = \mathcal{T}^{\mu\gamma}$ -int (A^c, r, s) .
- (2) $\mathcal{T}^{\mu\gamma}$ -int $(A, r, s)^c = \mathcal{T}^{\mu\gamma}$ -cl (A^c, r, s) .

A system $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ consisting of a set X with two intuitionistic fuzzy topologies in Šostak's sense $\mathcal{T}^{\mu\gamma}$ and $\mathcal{U}^{\mu\gamma}$ on X is called a *double bitopological space*.

DEFINITION 2.4. [9] Let A be an intuitionistic fuzzy set of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$. Then A is said to be

- (1) $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen if there is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)open set B in X such that $B \subseteq A \subseteq \mathcal{U}^{\mu\gamma}$ -cl(B, u, v),
- (2) $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen if there is an $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-open set B in X such that $B \subseteq A \subseteq \mathcal{T}^{\mu\gamma}$ -cl(B, r, s),
- (3) $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiclosed if there is a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r, s)-closed set B in X such that $\mathcal{U}^{\mu\gamma}$ -int $(B, u, v) \subseteq A \subseteq B$,
- (4) $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiclosed if there is an $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-closed set B in X such that $\mathcal{T}^{\mu\gamma}$ -int $(B, r, s) \subseteq A \subseteq B$.

3. Double (r,s)(u,v)-preopen sets

DEFINITION 3.1. Let A be an intuitionistic fuzzy set of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$. Then A is said to be

- (1) a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preopen set if $A \subseteq \mathcal{T}^{\mu\gamma}$ -int $(\mathcal{U}^{\mu\gamma}$ -cl(A, u, v), r, s),
- (2) an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preopen set if $A \subseteq \mathcal{U}^{\mu\gamma}$ -int $(\mathcal{T}^{\mu\gamma}$ -cl(A, r, s), u, v),
- (3) a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preclosed set if $A \supseteq \mathcal{T}^{\mu\gamma}$ -cl $((\mathcal{U}^{\mu\gamma}\text{-int}(A, u, v), r, s),$
- (4) an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preclosed set if $A \supseteq \mathcal{U}^{\mu\gamma}$ -cl $((\mathcal{T}^{\mu\gamma}\text{-int}(A, r, s), u, v).$

THEOREM 3.2. Let A be an intuitionistic fuzzy set of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$. Then the following statements are equivalent:

- (1) A is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preopen set.
- (2) A^c is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preclosed set.

Proof. It follows from Lemma 2.3.

COROLLARY 3.3. Let A be an intuitionistic fuzzy set of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$. Then the following statements are equivalent:

- (1) A is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preopen set.
- (2) A^c is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preclosed set.

THEOREM 3.4. Let A be an intuitionistic fuzzy set of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$.

(1) If A is $\mathcal{T}^{\mu\gamma}$ -fuzzy (r,s)-open of $(X,\mathcal{T}^{\mu\gamma})$, then A is $(\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$ -double (r,s)(u,v)-preopen of $(X,\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$.

(2) If A is $\mathcal{T}^{\mu\gamma}$ -fuzzy (r,s)-closed of $(X,\mathcal{T}^{\mu\gamma})$, then A is $(\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$ -double (r,s)(u,v)-preclosed of $(X,\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$.

Proof. (1) Let A be a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r,s)-open set of $(X,\mathcal{T}^{\mu\gamma})$. Then $A = \mathcal{T}^{\mu\gamma}$ -int(A,r,s). Clearly, we have $A \subseteq \mathcal{U}^{\mu\gamma}$ -cl(A,u,v) and hence

$$A = \mathcal{T}^{\mu\gamma}$$
-int $(A, r, s) \subseteq \mathcal{T}^{\mu\gamma}$ -int $(\mathcal{U}^{\mu\gamma}$ -cl $(A, u, v), r, s)$.

Thus A is $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preopen of $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$.

(2) Let A be a $\mathcal{T}^{\mu\gamma}$ -fuzzy (r,s)-closed set of $(X,\mathcal{T}^{\mu\gamma})$. Then $A = \mathcal{T}^{\mu\gamma}$ -cl(A,r,s). Clearly, we have $A \supseteq \mathcal{U}^{\mu\gamma}$ -int(A,u,v) and hence

$$A = \mathcal{T}^{\mu\gamma}\text{-cl}(A, r, s) \supseteq \mathcal{T}^{\mu\gamma}\text{-cl}(\mathcal{U}^{\mu\gamma}\text{-int}(A, u, v), r, s).$$

Thus A is $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preclosed of $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$. \square

COROLLARY 3.5. Let A be an intuitionistic fuzzy set of a double bitopological space $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ and $(r, s), (u, v) \in I \otimes I$.

- (1) If A is $\mathcal{U}^{\mu\gamma}$ -fuzzy (u,v)-open of $(X,\mathcal{U}^{\mu\gamma})$, then A is $(\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})$ -double (u,v)(r,s)-preopen of $(X,\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$.
- (2) If A is $\mathcal{U}^{\mu\gamma}$ -fuzzy (u, v)-closed of $(X, \mathcal{U}^{\mu\gamma})$, then A is $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preclosed of $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$.

But the converses in the above theorem and corollary need not be true which is shown by the following example.

EXAMPLE 3.6. Let $X = \{x, y\}$ and let A_1, A_2, A_3 and A_4 be intuitionistic fuzzy sets of X defined as

$$A_1(x) = (0.2, 0.4), \quad A_1(y) = (0.6, 0.3);$$

$$A_2(x) = (0.4, 0.3), \quad A_2(y) = (0.7, 0.1);$$

$$A_3(x) = (0.5, 0.2), \quad A_3(y) = (0.1, 0.8);$$

and

$$A_4(x) = (0.5, 0.3), \quad A_4(y) = (0.2, 0.4).$$

Define $\mathcal{T}^{\mu\gamma}: I(X) \to I \otimes I$ and $\mathcal{U}^{\mu\gamma}: I(X) \to I \otimes I$ by

$$\mathcal{T}^{\mu\gamma}(A) = (\mathcal{T}^{\mu}(A), \mathcal{T}^{\gamma}(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{2}, \frac{1}{5}) & \text{if } A = A_{1}, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}^{\mu\gamma}(A) = (\mathcal{U}^{\mu}(A), \mathcal{U}^{\gamma}(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{3}, \frac{1}{4}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ is a double bitopological space on X. The intuitionistic fuzzy set A_3 is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double $(\frac{1}{2}, \frac{1}{5})(\frac{1}{3}, \frac{1}{4})$ -preopen set which is not a $\mathcal{T}^{\mu\gamma}$ -fuzzy $(\frac{1}{2}, \frac{1}{5})$ -open set and A_3^c is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double $(\frac{1}{2}, \frac{1}{5})(\frac{1}{3}, \frac{1}{4})$ -preclosed set which is not a $\mathcal{T}^{\mu\gamma}$ -fuzzy $(\frac{1}{2}, \frac{1}{5})$ -closed set. Also A_4 is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double $(\frac{1}{3}, \frac{1}{4})(\frac{1}{2}, \frac{1}{5})$ -preopen set which is not an $\mathcal{U}^{\mu\gamma}$ -fuzzy $(\frac{1}{3}, \frac{1}{4})$ -open set and A_4^c is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double $(\frac{1}{3}, \frac{1}{4})(\frac{1}{2}, \frac{1}{5})$ -preclosed set which is not an $\mathcal{U}^{\mu\gamma}$ -fuzzy $(\frac{1}{3}, \frac{1}{4})$ -closed set.

LEMMA 3.7. That $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-semiopen $((\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-semiopen) and $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preopen $((\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preopen) are independent notions is shown by the following example.

EXAMPLE 3.8. Let $X = \{x, y\}$ and let A_1, A_2, A_3, A_4, A_5 and A_6 be intuitionistic fuzzy sets of X defined as

$$A_1(x) = (0.2, 0.7),$$
 $A_1(y) = (0.5, 0.3);$
 $A_2(x) = (0.5, 0.4),$ $A_2(y) = (0.2, 0.6);$
 $A_3(x) = (0.5, 0.3),$ $A_3(y) = (0.4, 0.2);$
 $A_4(x) = (0.3, 0.6),$ $A_4(y) = (0.5, 0.2);$
 $A_5(x) = (0.8, 0.1),$ $A_5(y) = (0.1, 0.7);$

and

$$A_6(x) = (0.6, 0.2), \quad A_6(y) = (0.2, 0.5).$$

Define $\mathcal{T}^{\mu\gamma}: I(X) \to I \otimes I$ and $\mathcal{U}^{\mu\gamma}: I(X) \to I \otimes I$ by

$$\mathcal{T}^{\mu\gamma}(A) = (\mathcal{T}^{\mu}(A), \mathcal{T}^{\gamma}(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{2}, \frac{1}{5}) & \text{if } A = A_{1}, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}^{\mu\gamma}(A) = (\mathcal{U}^{\mu}(A), \mathcal{U}^{\gamma}(A)) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (\frac{1}{3}, \frac{1}{4}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ is a double bitopological space on X. The intuitionistic fuzzy set A_3 is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double $(\frac{1}{2}, \frac{1}{5})(\frac{1}{3}, \frac{1}{4})$ -preopen set which is not a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double $(\frac{1}{2}, \frac{1}{5})(\frac{1}{3}, \frac{1}{4})$ -semiopen set and A_4 is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double $(\frac{1}{2}, \frac{1}{5})(\frac{1}{3}, \frac{1}{4})$ -semiopen set which is not a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double $(\frac{1}{2}, \frac{1}{5})(\frac{1}{3}, \frac{1}{4})$ -preopen set. Also A_5 is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double $(\frac{1}{3}, \frac{1}{4})(\frac{1}{2}, \frac{1}{5})$ -preopen set which is not an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double $(\frac{1}{3}, \frac{1}{4})(\frac{1}{2}, \frac{1}{5})$ -semiopen set and A_6 is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double $(\frac{1}{3}, \frac{1}{4})(\frac{1}{2}, \frac{1}{5})$ -semiopen set which is not an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -fuzzy $(\frac{1}{3}, \frac{1}{4})(\frac{1}{2}, \frac{1}{5})$ -preopen set.

THEOREM 3.9. Let $(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ be a double bitopological space and $(r, s), (u, v) \in I \otimes I$.

- (1) If $\{A_k\}$ is a family of $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preopen sets of X, then $\bigcup A_k$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preopen set.
- (2) If $\{A_k\}$ is a family of $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preopen sets of X, then $\bigcup A_k$ is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preopen set.
- (3) If $\{A_k\}$ is a family of $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preclosed sets of X, then $\bigcap A_k$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preclosed set.
- (4) If $\{A_k\}$ is a family of $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preclosed sets of X, then $\bigcap A_k$ is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preclosed set.

Proof. (1) Let $\{A_k\}$ be a collection of $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preopen sets. Then for each $k, A_k \subseteq \mathcal{T}^{\mu\gamma}$ -int $(\mathcal{U}^{\mu\gamma}$ -cl $(A_k, u, v), r, s)$. So

$$\bigcup A_k \subseteq \bigcup \mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{U}^{\mu\gamma}\text{-}\mathrm{cl}(A_k, u, v), r, s)$$
$$\subseteq \mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{U}^{\mu\gamma}\text{-}\mathrm{cl}(\bigcup A_k, u, v), r, s).$$

Thus $\bigcup A_k$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preopen set.

(2) Let $\{A_k\}$ be a collection of $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preopen sets. Then for each $k, A_k \subseteq \mathcal{U}^{\mu\gamma}$ -int $(\mathcal{T}^{\mu\gamma}$ -cl $(A_k, r, s), u, v)$. So

$$\bigcup A_k \subseteq \bigcup \mathcal{U}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(A_k, r, s), u, v)$$
$$\subseteq \mathcal{U}^{\mu\gamma}\text{-}\mathrm{int}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(\bigcup A_k, r, s), u, v).$$

Thus $\bigcup A_k$ is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preopen set.

- (3) It follows from (1) using Theorem 3.2.
- (4) It follows from (2) using Corollary 3.3

DEFINITION 3.10. Let $f:(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ be a mapping from a double bitopological space X to a double bitopological space Y and $(r,s),(u,v) \in I \otimes I$. Then f is called double pairwise (r,s)(u,v)-precontinuous if $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r,s)(u,v)-preopen set of X for each $\mathcal{V}^{\mu\gamma}$ -fuzzy (r,s)-open set A of Y and $f^{-1}(B)$ is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u,v)(r,s)-preopen set of X for each $\mathcal{W}^{\mu\gamma}$ -fuzzy (u,v)-open set B of Y.

THEOREM 3.11. Let $f:(X, \mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma}) \to (Y, \mathcal{V}^{\mu\gamma}, \mathcal{W}^{\mu\gamma})$ be a mapping and $(r, s), (u, v) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is a double pairwise (r, s)(u, v)-precontinuous mapping.
- (2) $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preclosed set of X for each $\mathcal{V}^{\mu\gamma}$ -fuzzy (r, s)-closed set A of Y and $f^{-1}(B)$ is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preclosed set of X for each $\mathcal{W}^{\mu\gamma}$ -fuzzy (u, v)-closed set B of Y.

(3) For each intuitionistic fuzzy set A of Y,

$$f^{-1}(\mathcal{V}^{\mu\gamma}\text{-}\mathrm{cl}(A,r,s)) \supseteq \mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(\mathcal{U}^{\mu\gamma}\text{-}\mathrm{int}(f^{-1}(A),u,v),r,s)$$

and

$$f^{-1}(\mathcal{W}^{\mu\gamma}\text{-cl}(A, u, v)) \supseteq \mathcal{U}^{\mu\gamma}\text{-cl}(\mathcal{T}^{\mu\gamma}\text{-int}(f^{-1}(A), r, s), u, v).$$

(4) For each intuitionistic fuzzy set C of X,

$$\mathcal{V}^{\mu\gamma}$$
-cl $(f(C), r, s) \supseteq f(\mathcal{T}^{\mu\gamma}$ -cl $(\mathcal{U}^{\mu\gamma}$ -int $(C, u, v), r, s)$

and

$$\mathcal{W}^{\mu\gamma}$$
-cl $(f(C), u, v) \supseteq f(\mathcal{U}^{\mu\gamma}$ -cl $(\mathcal{T}^{\mu\gamma}$ -int $(C, r, s), u, v)$.

- Proof. (1) \Rightarrow (2) Let A be any $\mathcal{V}^{\mu\gamma}$ -fuzzy (r,s)-closed set and B any $\mathcal{W}^{\mu\gamma}$ -fuzzy (u,v)-closed set of Y. Then A^c is a $\mathcal{V}^{\mu\gamma}$ -fuzzy (r,s)-open set and B^c is a $\mathcal{W}^{\mu\gamma}$ -fuzzy (u,v)-open set of Y. Since f is double pairwise (r,s)(u,v)-precontinuous, $f^{-1}(A^c)$ is a $(\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$ -double (r,s)(u,v)-preopen set and $f^{-1}(B^c)$ is an $(\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})$ -double (u,v)(r,s)-preopen set of X. By Theorem 3.2 and Corollary 3.3, $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$ -double (r,s)(u,v)-preclosed set and $f^{-1}(B)$ is an $(\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})$ -double (u,v)(r,s)-preclosed set of X.
- $(2)\Rightarrow (1)$ Let A be any $\mathcal{V}^{\mu\gamma}$ -fuzzy (r,s)-open set and B any $\mathcal{W}^{\mu\gamma}$ -fuzzy (u,v)-open set of Y. Then A^c is a $\mathcal{V}^{\mu\gamma}$ -fuzzy (r,s)-closed set and B^c is a $\mathcal{W}^{\mu\gamma}$ -fuzzy (u,v)-closed set of Y. By (2), $f^{-1}(A^c)$ is a $(\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$ -double (r,s)(u,v)-preclosed set and $f^{-1}(B^c)$ is an $(\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})$ -double (u,v)(r,s)-preclosed set of X. By Theorem 3.2 and Corollary 3.3, $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$ -double (r,s)(u,v)-preopen set and $f^{-1}(B)$ is an $(\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})$ -double (u,v)(r,s)-preopen set of X. Thus f is a double pairwise (r,s)(u,v)-precontinuous mapping.
- $(2)\Rightarrow (3)$ Let A be any intuitionistic fuzzy set of Y. Then $\mathcal{V}^{\mu\gamma}$ -cl(A,r,s) is a $\mathcal{V}^{\mu\gamma}$ -fuzzy (r,s)-closed set and $\mathcal{W}^{\mu\gamma}$ -cl(A,u,v) is a $\mathcal{W}^{\mu\gamma}$ -fuzzy (u,v)-closed set of Y. By (2), $f^{-1}(\mathcal{V}^{\mu\gamma}$ -cl(A,r,s)) is a $(\mathcal{T}^{\mu\gamma},\mathcal{U}^{\mu\gamma})$ -double (r,s)(u,v)-preclosed set and $f^{-1}(\mathcal{W}^{\mu\gamma}$ -cl(A,u,v)) is an $(\mathcal{U}^{\mu\gamma},\mathcal{T}^{\mu\gamma})$ -double (u,v)(r,s)-preclosed set of X. Thus

$$f^{-1}(\mathcal{V}^{\mu\gamma}\text{-cl}(A,r,s)) \supseteq \mathcal{T}^{\mu\gamma}\text{-cl}(\mathcal{U}^{\mu\gamma}\text{-int}(f^{-1}(\mathcal{V}^{\mu\gamma}\text{-cl}(A,r,s)),u,v),r,s)$$
$$\supseteq \mathcal{T}^{\mu\gamma}\text{-cl}(\mathcal{U}^{\mu\gamma}\text{-int}(f^{-1}(A),u,v),r,s)$$

and

$$f^{-1}(\mathcal{W}^{\mu\gamma}\text{-}\mathrm{cl}(A, u, v)) \supseteq \mathcal{U}^{\mu\gamma}\text{-}\mathrm{cl}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(f^{-1}(\mathcal{W}^{\mu\gamma}\text{-}\mathrm{cl}(A, u, v)), r, s), u, v)$$
$$\supseteq \mathcal{U}^{\mu\gamma}\text{-}\mathrm{cl}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(f^{-1}(A), r, s), u, v).$$

 $(3) \Rightarrow (4)$ Let C be any intuitionistic fuzzy set of X. Then f(C) is an intuitionistic fuzzy set of Y. By (3),

$$f^{-1}(\mathcal{V}^{\mu\gamma}\text{-}\mathrm{cl}(f(C), r, s)) \supseteq \mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(\mathcal{U}^{\mu\gamma}\text{-}\mathrm{int}(f^{-1}f(C), u, v), r, s)$$
$$\supset \mathcal{T}^{\mu\gamma}\text{-}\mathrm{cl}(\mathcal{U}^{\mu\gamma}\text{-}\mathrm{int}(C, u, v), r, s)$$

and

$$f^{-1}(\mathcal{W}^{\mu\gamma}\text{-}\mathrm{cl}(f(C), u, v)) \supseteq \mathcal{U}^{\mu\gamma}\text{-}\mathrm{cl}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(f^{-1}f(C), r, s), u, v)$$
$$\supseteq \mathcal{U}^{\mu\gamma}\text{-}\mathrm{cl}(\mathcal{T}^{\mu\gamma}\text{-}\mathrm{int}(C, r, s), u, v).$$

Hence

$$\mathcal{V}^{\mu\gamma}\text{-cl}(f(C), r, s) \supseteq ff^{-1}(\mathcal{V}^{\mu\gamma}\text{-cl}(f(C), r, s))$$
$$\supseteq f(\mathcal{T}^{\mu\gamma}\text{-cl}(\mathcal{U}^{\mu\gamma}\text{-int}(C, u, v), r, s))$$

and

$$\mathcal{W}^{\mu\gamma}\text{-cl}(f(C), u, v) \supseteq ff^{-1}(\mathcal{W}^{\mu\gamma}\text{-cl}(f(C), u, v))$$
$$\supseteq f(\mathcal{U}^{\mu\gamma}\text{-cl}(\mathcal{T}^{\mu\gamma}\text{-int}(C, r, s), u, v)).$$

 $(4) \Rightarrow (2)$ Let A be any $\mathcal{V}^{\mu\gamma}$ -fuzzy (r,s)-closed set and B any $\mathcal{W}^{\mu\gamma}$ -fuzzy (u,v)-closed set of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are intuitionistic fuzzy sets of X. By (4),

$$A = \mathcal{V}^{\mu\gamma}\text{-cl}(A, r, s) \supseteq \mathcal{V}^{\mu\gamma}\text{-cl}(ff^{-1}(A), r, s)$$
$$\supseteq f(\mathcal{T}^{\mu\gamma}\text{-cl}(\mathcal{U}^{\mu\gamma}\text{-int}(f^{-1}(A), u, v), r, s))$$

and

$$B = \mathcal{W}^{\mu\gamma}\text{-}\operatorname{cl}(B, u, v) \supseteq \mathcal{W}^{\mu\gamma}\text{-}\operatorname{cl}(ff^{-1}(B), u, v)$$
$$\supseteq f(\mathcal{U}^{\mu\gamma}\text{-}\operatorname{cl}(\mathcal{T}^{\mu\gamma}\text{-}\operatorname{int}(f^{-1}(B), r, s), u, v)).$$

So

$$f^{-1}(A) \supseteq f^{-1}f(\mathcal{T}^{\mu\gamma}\text{-}\operatorname{cl}(\mathcal{U}^{\mu\gamma}\text{-}\operatorname{int}(f^{-1}(A), u, v), r, s))$$

$$\supseteq \mathcal{T}^{\mu\gamma}\text{-}\operatorname{cl}(\mathcal{U}^{\mu\gamma}\text{-}\operatorname{int}(f^{-1}(A), u, v), r, s)$$

and

$$f^{-1}(B) \supseteq f^{-1}f(\mathcal{U}^{\mu\gamma}\text{-}\operatorname{cl}(\mathcal{T}^{\mu\gamma}\text{-}\operatorname{int}(f^{-1}(B), r, s), u, v))$$
$$\supseteq \mathcal{U}^{\mu\gamma}\text{-}\operatorname{cl}(\mathcal{T}^{\mu\gamma}\text{-}\operatorname{int}(f^{-1}(B), r, s), u, v).$$

Therefore $f^{-1}(A)$ is a $(\mathcal{T}^{\mu\gamma}, \mathcal{U}^{\mu\gamma})$ -double (r, s)(u, v)-preclosed set and $f^{-1}(B)$ is an $(\mathcal{U}^{\mu\gamma}, \mathcal{T}^{\mu\gamma})$ -double (u, v)(r, s)-preclosed set of X.

References

- K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, *Gradation of openness : Fuzzy topology*, Fuzzy Sets and Systems **49** (1992), 237-242.
- [4] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [5] D. Çoker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Šostak's sense, BUSEFAL 67 (1996), 67-76.
- [6] D. Çoker and A. Haydar Eş, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3 (1995), 899-909.
- [7] H. Gürçay, D. Çoker, and A. Haydar Eş, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5 (1997), 365-378.
- [8] A. Kandil, Biproximities and fuzzy bitopological spaces, Simon Stevin 63 (1989), 45-66.
- [9] E. P. Lee and S. O. Lee, *Double semiopen sets on double bitopological spaces*, Journal of The Chungcheong Mathematical Society **26** (2013), 691-702.
- [10] E. P. Lee and S. O. Lee, Double pairwise (r, s)(u, v)-semicontinuous mappings, Journal of The Chungcheong Mathematical Society **27** (2014), 603-614.
- [11] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- [12] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Janos Palermo, Sr. II 11 (1985), 89-103.

*

Department of Clinical Laboratory Science Seonam University Namwon 590-711, Republic of Korea *E-mail*: eplee@seonam.ac.kr

**

Department of Mathematics Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: solee@chungbuk.ac.kr